Quadratic irrationals, ambiguous classes and symmetry in real quadratic fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ambiguous Classes in Quadratic Fields

We provide sufficient conditions for the class group of a quadratic field (with positive or negative discriminant) to be generated by ambiguous ideals. This investigation was motivated by a recent result of F. Halter-Koch, which we show is false.

متن کامل

Quadratic Irrationals, Quadratic Ideals and Indefinite Quadratic Forms II

Let D = 1 be a positive non-square integer and let δ = √ D or 1+ √ D 2 be a real quadratic irrational with trace t = δ + δ and norm n = δδ. Let γ = P+δ Q be a quadratic irrational for positive integers P and Q. Given a quadratic irrational γ, there exist a quadratic ideal Iγ = [Q, δ + P ] and an indefinite quadratic form Fγ(x, y) = Q(x−γy)(x−γy) of discriminant Δ = t − 4n. In the first section,...

متن کامل

Real Quadratic Number Fields

a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...

متن کامل

Distribution of Reduced Quadratic Irrationals

Let Φ(N) denote the number of products of matrices [ 1 1 0 1 ] and [ 1 0 1 1 ] of trace equal to N , and Ψ(N) = N n=3 Φ(n) be the number of such products of trace at most N . We prove an asymptotic formula of type Ψ(N) = c1N 2 logN + c2N 2 + Oε(N ) as N → ∞. As a result, the Dirichlet series ∞ n=3 Φ(n)n −s has a meromorphic extension in the half-plane <(s) > 7 4 with a single, order two pole at...

متن کامل

Overpartitions and Real Quadratic Fields

It is shown that counting certain differences of overpartition functions is equivalent to counting elements of a given norm in appropriate real quadratic fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1994

ISSN: 0386-2194

DOI: 10.3792/pjaa.70.218